Maxwell


James Clerk Maxwell




James Clerk Maxwell (13 de Junio de 1831 - 5 de Noviembre de 1879) fue un científico escocés especializado en el campo de la física matemática. Su mayor logro fue la formulación de la teoría clásica de la radiación electromagnética, que unificó por primera vez la electricidad, el magnetismo y la luz como manifestaciones distintas de un mismo fenómeno. Las ecuaciones de Maxwell, formuladas para el electromagnetismo, han sido ampliamente consideradas la “segunda gran unificación de la física”, siendo la primera aquella realizada por Isaac Newton.
Con la publicación de A Dynamical Theory of the Electromagnetic Field en 1865, Maxwell demostró que el campo eléctrico y el campo magnético viajan a través del espacio en forma de ondas que se desplazan a la velocidad de la luz. Maxwell propuso también que la luz era una ondulación en el mismo medio que es causa de los fenómenos eléctricos y magnéticos.

Maxwell ayudó en el desarrollo de la distribución Maxwell-Boltzmann, un medio para describir de forma estadística ciertos aspectos de la teoría cinética de los gases. También es conocido por haber presentado, en 1861, la primera fotografía en color duradera, y por su trabajo en el análisis de la rigidez de las celosías que a día de hoy están presentes en muchos puentes.

Sus descubrimientos fueron claves para entrar en la era de la física moderna, sentando los cimientos de campos como la relatividad especial o la mecánica cuántica. Muchos físicos consideran a Maxwell el científico del S. XIX con mayor influencia en la física del S. XX. Su contribución a la ciencia es valorada por muchos como comparable a aquella realizada por científicos como Isaac Newton o Albert Einstein y, en la votación del milenio - una encuesta sobre los 100 mayores físicos de la época -, Maxwell acabó en tercer puesto, sólo detrás de los dos científicos anteriormente mencionados. En el centenario del nacimiento de Maxwell, Einstein describió su trabajo como el “más profundo y fructífero que la física hubiese experimentado desde los tiempos de Newton”

Desarrollo histórico de las ecuaciones de Maxwell

Desde finales del siglo XVIII diversos científicos formularon leyes cuantitativas que relacionaban las interacciones entre los campos eléctricos, los campos magnéticos y las corrientes sobre conductores. Entre estas leyes están la ley de Ampère, la ley de Faraday o la ley de Lenz. Maxwell lograría unificar todas estas leyes en una descripción coherente del campo electromagnético.

Maxwell se dio cuenta de que la conservación de la carga eléctrica parecía requerir introducir un término adicional en la ley de Ampère. De hecho, actualmente se considera que uno de los aspectos más importantes del trabajo de Maxwell en el electromagnetismo es el término que introdujo en dicha ley: la derivada temporal de un campo eléctrico, conocida como corriente de desplazamiento. El trabajo que Maxwell publicó en 1865, A Dynamical Theory of the Electromagnetic Field, modificaba la versión de la ley de Ampère con lo que se predecía la existencia de ondas electromagnéticas propagándose, dependiendo del medio material, a la velocidad de la luz en dicho medio. De esta forma Maxwell identificó la luz como una onda electromagnética, unificando así la óptica con el electromagnetismo.

Exceptuando la modificación a la ley de Ampère, ninguna de las otras ecuaciones era original. Lo que hizo Maxwell fue reobtener dichas ecuaciones a partir de modelos mecánicos e hidrodinámicos usando su modelo de vórtices de líneas de fuerza de Faraday.

En 1884, Oliver Heaviside junto con Willard Gibbs agrupó estas ecuaciones y las reformuló en la notación vectorial actual. Sin embargo, es importante conocer que al hacer eso, Heaviside usó derivadas parciales temporales, diferentes a las derivadas totales usadas por Maxwell, en la ecuación (54). Ello provocó que se perdiera el término {\displaystyle v\times B} que aparecía en la ecuación posterior del trabajo de Maxwell (número 77). En la actualidad, este término se usa como complementario a estas ecuaciones y se conoce como fuerza de Lorentz.

La historia es aún confusa, debido a que el término ecuaciones de Maxwell se usa también para un conjunto de ocho ecuaciones en la publicación de Maxwell de 1865, A Dynamical Theory of the Electromagnetic Field, y esta confusión se debe a que seis de las ocho ecuaciones son escritas como tres ecuaciones para cada eje de coordenadas, así se puede uno confundir al encontrar veinte ecuaciones con veinte incógnitas. Los dos tipos de ecuaciones son casi equivalentes, a pesar del término eliminado por Heaviside en las actuales cuatro ecuaciones.


Ecuaciones de Maxwell

Las ecuaciones de Maxwell como ahora las conocemos son las cuatro  y a manera de resumen se pueden encontrar en la siguiente tabla:
NombreForma diferencialForma integral
Ley de Gauss:
Ley de Gauss para el campo magnético:
Ley de Faraday:
Ley de Ampère generalizada:
Estas cuatro ecuaciones junto con la fuerza de Lorentz son las que explican cualquier tipo de fenómeno electromagnético. Una fortaleza de las ecuaciones de Maxwell es que permanecen invariantes en cualquier sistema de unidades, salvo de pequeñas excepciones, y que son compatibles con la relatividad especial y general. Además Maxwell descubrió que la cantidad: 

era simplemente la velocidad de la luz en el vacío, por lo que la luz es una forma de radiación electromagnética. Los valores aceptados actualmente para la velocidad de la luz, la permitividad y la permeabilidad magnética se resumen en la siguiente tabla:
SímboloNombreValor numéricoUnidad de medida SITipo
Velocidad de la luz en el vacíometros por segundodefinido
Permitividad del vacíofaradios por metroderivado
Permeabilidad magnéticahenrios por metrodefinido

Últimos años, 1865-1879

En 1865 Maxwell abandonó el King’s College, en Londres, y volvió a Glenlair con Katherine. En su paper “On reciprocal figures, frames and diagrams of forces” (1870) estudió la rigidez de varios diseños de entramado. Escribió el libro de texto Theory of Heat (1871) y el tratado Matter and Motion (1876). Maxwell también fue el primero en hacer uso explícito del análisis dimensional, en 1871.

En 1871 se convirtió en el primer Profesor Cavendish de Física en Cambridge. Maxwell fue puesto a cargo del desarrollo del Laboratorio Cavendish, supervisando cada paso del progreso del edificio y de la compra del material de laboratorio. Una de las últimas grandes contribuciones a la ciencia realizadas por Maxwell fue la edición (con cuantiosas anotaciones originales) de la investigación de Henry Cavendish, según la cual parece que Cavendish investigó, entre otras cosas, cuestiones como la densidad de la Tierra y la composición del agua.

Maxwell murió en Cambridge de cáncer abdominal el 5 de noviembre de 1879 a los 48 años. Su madre había muerto a la misma edad por culpa de la misma clase de cáncer.

Maxwell es enterrado en Parton Kirk, cerca de Castle Douglas en Galloway cerca de donde se crió. La extensa biografía The life of James Clerk Maxwell, por su antiguo compañero de clase y eterno amigo el Profesor Lewis Campbell, fue publicado en 1882. Sus trabajos fueron incluidos en volúmenes de la Cambridge University Press en 1890.

Como un gran amante de la poesía Escocesa, Maxwell los memorizo y escribió los suyos propios. El más conocido es Rigid Body Sings, muy similar a “comin’ through the rye” de Robert Burnsen la cual solía cantar acompañado de una guitarra, la cual empieza de esta manera:

Las descripciones de Maxwell observando a sus notables cualidades intelectuales están acompañados de una dificultad social. Maxwell era un evangélico presbiteriano y en sus últimos años se convirtió en un anciano de la iglesia de Escocia. Las creencias religiosas de Maxwell y actividades relacionadas fueron el foco de un gran número de papeles. Asistió a la Iglesia de Escocia y Episcopal cuando era un niño, Maxwell sufrió luego una conversión evangélica en abril de 1853.Una faceta de esta conversión puede haber alineado con una posición antipositivista.

Comentarios

Entradas populares